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Abstract- In high risk situations such as cardiac arrhythmias, 
ambulatory monitoring, stress tests, sleep disorder investigations 
and post-operative hypoxemia situations, monitoring of 
respiratory activity would be mandatory. Electrocardiogram 

(ECG), blood pressure (BP) and photoplethysmographic (PPG) 
signals can be used for extraction of respiratory activity, and will 
eventually eliminate the use of additional respiratory sensor. 
Using a simple and standard non-parametric mathematical 

technique, Principal Component Analysis (PCA), the respiratory 
related information is extracted from complex data sets such as 
PPG and BP signals. The respiratory induced variations (RIV) of 
PPG and BP signals are described by coefficients of computed 
principal components. Singular value ratio (SVR) trend is used to 
find the periodicity, which is one of the crucial parameters in 
forming the data sets for PCA. Test results on MIMIC data base 
clearly indicated a strong correlation between the extracted and 
actual respiratory signals. Statistical measures in both time and 

frequency domains such as Relative Correlation Coefficient 
(RCC) and Magnitude Squared Coherence (MSC) respectively 
and Accuracy Rate (AR) are calculated to demonstrate the fact, 

that respiratory signal is present in the form of first principal 

components. 

Keywords-Respiratory activity, PPG signal, Principal 
Component Analysis (PCA). 

I. INTRODUCTION 

Photoplethysmography is a non-invasive electro-optic 
method developed by Hertzman, which provides information 
on the blood volume flowing at a particular test site on the 
body close to the skin. A photoplethysmogram (PPG) is 
obtained by illuminating a part of the body of interest with 
either red or infrared light and acquiring either the reflected or 
transmitted light [1]-[2]. PPG waveform contains two 
components; one, attributable to the pulsatile component in the 
vessels, i.e. the arterial pulse, which is caused by the heartbeat, 
and gives a rapidly alternating signal (AC component). The 
second one is due to the blood volume and its change in the 
skin which gives a steady signal that changes very slowly (DC 
component). PPG signal consists of not only the heart-beat 
information but also a respiratory signal [3]. It is also evident 
from the literature that, the intra-aortic blood pressure (ABP) 
signals are also modulated by respiratory activity [4]. Different 
signal processing techniques like filtering, wavelets and other 
statistical methods, which work by extraction of respiratory 
trend embedded into BP signals, as an additive component, or 
an amplitUde modulated (AM) component or frequency 

modulated (FM) component. Extraction of respiration activity 
from PPG and BP signals would be an alternative approach for 
obtaining information related to respiration. 

A. Respiratory induced modulation of P PO and BP signals 

In addition to heart-synchronous variations, the PPG signal 
contains respiratory-induced intensity variations (RIIV) [5]­
[7]. This modulation arises from respiratory-induced 
variations in venous return to the heart, caused by the 
alterations in intrathoracic pressure. A part of the respiratory­
related fluctuations in perfusion also originates from the 
autonomous control of the peripheral vessels and is also 
synchronous with respiration. 

Pulses Paradoxus (PP) is the inspiratory reduction in systolic 
blood pressure and is proportional to changes in intrathoracic 
pressure during inspiration and expiration [8]. Blood Pressure 
Variability (BPV) is due to the sudden increase in volume 
when, the heart contracts and the blood is pumped through the 
aorta in to arteries. Each time interval of systolic blood 
pressure has been shown to have a cyclic variation related to 
respiration. 

B. P PO and BP derived respiration algorithms 

A bivariate AR spectral estimation method [9] 
demonstrated that there exist high coherence between 
spectrum of respiratory and PPG signals. An adaptive FIR 
filter [10], designed in frequency sampling method with 
suitable specifications drawn automatically from the PSD, 
efficiently estimates heart and respiratory related signals. 

The blood pressure induced respiration is also extensively 
studied by different researchers. Various signal processing 
methods [11] were proposed for extracting BDR activity. 
These algorithms mainly utilize the amplitude and temporal 
variations of systolic blood pressure. In this paper, our work is 
also extended to estimate the breathing rates from the ABP 
signals. 

C. Principal Component Analysis 

PCA identifies patterns in data, and expresses the data in 
such a way as to highlight their similarities and differences. 
Since patterns in data can be hard to find in data of high 
dimension, where the luxury of graphical representation is not 
available, PCA is a powerful tool for analyzing such data. 
PCA is a technique which is generally used for reducing the 
dimensionality of multivariate datasets i.e. reducing the 
number of dimensions, without much loss of information. 
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Considering a vector of n random variables x for which the 
covariance matrix is I:, the principal components (PCs) can be 
defmed by 

z=Ax (1) 

where z is the vector of n PCs and A is the n by n orthogonal 
matrix with rows that are the eigenvectors of I: [12]. The 
eigenvalues of I: are proportional to the fraction of the total 
variance accounted for by the corresponding eigenvectors, so 
the PCs explaining most of the variance in the original 
variables can be identified. If, as is usually the case, some of 
the original variables are correlated, a small subset of the PCs 
describes a large proportion of the variance of the original 
data. PCA has found widespread application in ECG signal 
processing [13]. 

II. MATERIALS AND METHODS 

MIMIC database of the Physiobank archive [14] contains 
multi-parameter data records of the ICU admitted patients. 
These records all contain simultaneously recorded PPG, 
Aortic Blood Pressure (ABP) and also respiratory waveforms 
for use as ready reference. Eight such identified records were 
used in assessing the accuracy of the algorithms for extraction 
of breathing rates. All these signals were recorded at a 
sampling rate of 125Hz. Five neat portions, each of one 
minute from eight different records are taken which did not 
have missing data in any of the three signals. An extrema 
detection algorithm is used for detection of time stamps for 
individual breaths in the reference respiratory signal, with 
results checked visually so that all of the respiratory cycles are 
compared with that of the derived ones. 

A. IdentifYing the periodicity: 

SVD is applied to the aligned PPG data matrix and the ratio 
of first two singular values, called singular value ratio (SVR) 
is computed, in each case length of signal to be considered as 
a period for expected range of heart rates. The ratios are then 
plotted against the period to obtain graph called SVR spectrum 
of the signal. From SVR spectrum, the particular value of 
period for which the SVR is maximum, is considered as the 
period of PPG or BP signal as shown in Fig. 1 Then the data is 
aligned according to the period of the signal. 
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Figure 1. SVR profile for a typical PPG signal 

B. Applying peA 

The two methods by which PCA can be solved are 
covariance matrix method and the other singular value 
decomposition (SVD) method. The steps involved in 
covariance method are discussed below. 

Form a data set by using the periodicity of the PPG signal. 
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Periodicity will be found using SVR profile i.e. the ratio of 
first principal component to the second principal component. 
The data matrix X is size of m x n, where n is the SVR 
computed periodicity and m is the number of periods 
considered. 

X(t)=[XI (t), x2 (t), X3 (t), ...... xm (t)] (2) 

is the time ordered collection of the feature at all beats into a 
single matrix to which PCA can be applied. The means of the 
Xi are removed and the covariance matrix computed. The 
covariance is defmed as 

(3) 

L is an m x m square symmetric matrix, eigenvalues (a,;) and 
corresponding eigenvectors O.j) will be calculated, In general, 
once eigenvectors are found from the covariance matrix, the 
next step is to order them by eigenvalue, highest to lowest. 
This gives you the components in order of significance. The 
lesser eigenvalues can be ignored; this will form the basis for 
compression. Principal components are ordered eigenvectors 
of the covariance matrix. The PCs were obtained using 

zj=ajx j=l,2, . . . . . . .  n (4) 

The PCs are a linear transformation of the beats with 
transformation coefficients given by the eigenvectors aj. It is 
the eigenvectors which provide the surrogate respiratory signal 
in our analysis. 

PCA provides as many PCs as there are analyzed beats 
however, because these beats are highly correlated and the 
respiratory related PPG changes are large, most of the 
variability was expressed by the first few PCs. Therefore the 
assessed eigenvectors of the first three PCs as surrogates for 
the respiratory signal for all PPG features. 

The SVD based method for solving PCA problem is 
discussed here. Let X is an arbitrary n x m matrix and XT X be 

a rank r, square, symmetric m x m matrix. {i\, 1\ ,v3 •••••• vr} is 

the set of orthonormal mx 1 eigenvectors with associated 

eigenvalues for {�, �,�, ...... Ar} the symmetric matrix XT X. 

(XT X)Vi = Ai Vi (5) 

CYi = ,JI; are positive real and termed the singular values 

{ up u2 , u3 •••••• U r} is the set of n x 1 vectors defined by 

U = II [Xv] I ICYi I 

� � {I 
ui uj = 0 

i= j 
. . Eigenvectors are orthonormal. 
l*} 

(6) 

(7) 



The scalar version of singular value decomposition is 

X Vt =CFJlt (8) 

X multiplied by an eigenvector of XTX is equal to a scalar 
times another vector. The set of eigenvectors 

{VI'V2'V3 •••••• vr} and the set of vectors are 

{UI'U2 ,u3 •••••• ur} both orthonormal sets and bases in r 

dimensional space. 

o 

L= (9) 

o o 

CF\ :2:: CF2 :2::CF3 • • •  :2::CFy are the rank-ordered set of singular 

values. Likewise we construct accompanying orthogonal 
matrices, 

Matrix version of SVD 

XV=UL 

(10) 

(11) 

(12) 

where each column of V and U perform the scalar version 
of the decomposition (Equation 3). Because V is orthogonal, 
we can multiply both sides by V-l =VT to arrive at the final 
form of the decomposition. 

XV= ULVT (13) 

III. RESULTS AND DISCUSSION 

The respiratory signals derived using the PCA on PPG and 
BP signals of the different records of MIMIC database are 
compared with the reference respiratory signal present in the 
records. Fig 2 shows a PPG signal, original respiratory signal, 
first three principal components and their corresponding 
spectra, for two different data sets. Similarly Fig 3 shows BP 
signal, original respiratory signal, first three principlal 
components and their corresponding spectra for two different 
data sets. It can be clearly seen from the figures that the first 
principal component is exactly carrying the respiraoty 
information. Fig 4 shows original respiratoy, PPG, respiratory 
signal extracted from PPG signal, BP and respiratory signal 
extracted from BP signal. The results clearly indicated that the 
extracted respiratory signal is having a strong correlation with 
that of the actual respiratory signal. Though the visual 
inspection of the derived respiratory signals indicates a close 
match with those of reference respiratory signals, a degree of 
similarity in time domain is quantified in terms of relative 
correlation co-efficient (RCC) defined as 

RCC=
R

xr(O) 
R.rr(O) 

(14) 

where Rxy (0) is maximum value of cross correlation between 
derived and original respiratory signal, 
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Figure 2. (i) Original PPG (ii) Original respiratory (iii) PCl (iv) PC2 
(v) PC3 along with their corresponding spectra for two different subjects 
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Figure 3. (i) Original BP (ii) Original respiratory (iii) PCI (iv) PC2 (v) PC3 
along with their corresponding spectra for two different subjects 
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Figure 4. (a) Original respiratory signal (b) Original PPO signal (c) PDR signal (d) Original BP signal (e) BDR signal 

Rxx (0) is the maximum value of auto correlation function of 
original respiratory signal. In addition, a frequency domain 
measure of similarity, the magnitude squared coherence 
(MSC), was also estimated for each recording as defined in 
equation (15). 

MSC Ipxy (f)12 
Px (f)Py (f) (15) 

where Pxr (j) is cross power spectral density of original and 
surrogate respiratory signals, Px (j), Py (j) are auto power 
spectral density of original and surrogate respiratory signals 
respectively. These two measures were computed for the 
surrogate respiratory signal and reference respiratory signal. 
Table I and III indicates the computed RCC and MSC for the 
presented method for first three principal components of PPG 
and BP. Table II and IV presents the accuracy calculations for 
the same. 

Table I. Statistical measures for PDR 

PPG Derived Respiratory 
PCI PC2 PC3 

MSC RCC MSC RCC MSC RCC 
Data I 0.97 0.70 0.44 0.42 0.3 1 0.2 1 

Data 2 0.95 0.63 0.48 0.30 0.25 0. 14 

Data 3 0.98 0.69 0.39 0.37 0.27 0. 16 

Data 4 0.92 0.65 0.42 0.3 1 0.32 0.22 

Table II. Accuracy calculation for PDR 

ORR PCI PC2 PC3 
ERR AR{%! ERR AR{%) ERR AR{%! 

Data 1 14. 17 14. 16 99.86 13.8 97.32 12.4 89.85 

Data 2 10.38 10.38 100.0 10.2 98.27 9. 12 89.4 1 

Data 3 12.36 12.06 97.57 12.0 97.09 1 1.2 92.86 

Data 4 15.72 15.7 1 99.94 15.2 96.69 13.8 87.85 

Table III. Statistical measures for BDR 

PPG Derived Respiratory 
PCI PC2 PC3 

MSC RCC MSC RCC MSC RCC 
Data 1 0.94 0.73 0.34 0.44 0.33 0.23 

Data 2 0.96 0.66 0.49 0.28 0.26 0. 14 

Data 3 0.97 0.7 1 0.42 0.35 0.29 0. 18 

Data 4 0.94 0.62 0.38 0.30 0.33 0.25 

Table IV. Accuracy calculation for BDR 

ORR PCI PC2 PC3 
ERR AR{%� ERR AR{%� ERR AR{%! 

Data 1 14. 17 14. 17 100.0 13.6 95.97 12.2 86.09 

Data 2 10.38 10.36 99.80 10.0 96.33 9. 19 88.53 

Data 3 12.36 12. 16 98.38 1 1.9 96.27 1 1.6 93.85 

Data 4 15.72 15.70 99.87 15.0 95.4 1 13.9 88.42 

ORR: Original Respiratory Rate, ERR: Estimated Respiratory Rate, AR: 
Accuracy Rate 
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IV. CONCLUSION 

Monitoring the respiratory activity would be mandatory in 
high risk situations such as cardiac arrhythmias, ambulatory 
monitoring, stress tests, sleep disorder investigations and post­
operative hypoxemia situations. Extraction of respiratory 
activity from ECG, BP and PPG recordings will potentially 
eliminate the use of exclusive respiratory sensor intended to 
record respiratory activity. In this paper, a novel PCA based 
technique is presented and applied to extract respiratory 
signals from PPG and BP signals. Test results on MIMIC data 
base clearly indicated a strong correlation between the 
extracted and actual respiratory signals. Calculated statistical 
measures, in both time and frequency domains, demonstrated 
that respiratory signal is present in the form of fIrst principal 
components of the data. 
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